
L. VERSINI 1

Investigating the Thermal Management of a
Microprocessor using a Numerical Approach

Sunday 9th May, 2021

L. Versini

Abstract—We solve the steady-state heat equation numerically
to investigate the average temperature across a full-speed op-
erating microprocessor which erogates 0.5 W/mm3 of power
density. We model heat to be diffused into the environment via
natural or forced convection (using a fan) and we illustrate the
algorithms we used to solve for the temperature under both
conditions. We found that without heat sink, the system reaches
an average temperature of (7301 ± 2) oC which is well above
the operating temperature of 80 oC. With the addition of a
heat sink made by 28 fins 30mm high, the average temperature
under natural convection is (453 ± 2) oC. By considering the
same system under forced convection boundary condition, a
temperature of (79.9 ± 2) oC is achieved, which is within the
operating temperature. We then show that this shape is the
optimal one in terms of surface area occupied by the sink. Finally
we compare a triangular and a rectangular fin heat sink and note
that the latter one is more effective in dissipating heat.

I. INTRODUCTION

THE miniaturisation of electronics can imply the increase
in the thermal power produced per unit volume and

an uncontrolled temperature rise can lead to a reduction
of the circuit’s performances [1]. It is therefore of interest
trying to control the temperature developed within a circuit.
We solve the heat equation for the maximum temperature
achieved by a full speed operating microprocessor (power
density 0.5 W/mm3) with and without the addition of a heat
sink. We model the heat transfer at surfaces with the equations
showed in Sec. II-A2 but we otherwise neglect fluid dynamic
effects.

II. THEORY AND COMPUTATIONAL METHOD

At the core of our simulation is the solution of the steady
state heat equation (6) (which is a partial differential equation,
PDE), via numerical methods. In this section we briefly
introduce the physics behind our model and we show how
we moved from the continuous PDE to the discrete case.

A. Underlying Physics

1) Fourier Law conduction: Consider the rod depicted in
Fig. 1 which has thermal conductivity κ. Fourier Law of
conduction [2, p. 571] expresses the heat flux φA→B from
body A (left) to body B (center) as

φA→B = κ
Ta − Tb

h
, (1)

where h is the distance between bodies A and B. The overall

Fig. 1: Rod with a non-zero temperature gradient. Heat flows
from warmer slice A into slice B and from B into C according
to Fourier’s Law of conduction, where temperatures are such
that Ta > Tb > Tc. Distance between slices A-B-C is h.

heat flux through B is given by the contribution of heat coming
from A minus the outgoing energy into C (colder body).
Hence,

φtotal = φA→B − φB→C = κ
−2Tb + Ta + Tc

h
(2)

We note that in the steady-state, we have φtotal = 0.
2) Heat dissipation: The heat generated in the micropro-

cessor is dissipated at the solid-air interface. We assume
convection to be the dominating process and two empirical
formulas are given in [3] to model heat flux φ at the boundary
in case of natural convection (N) and forced convection (F)
via a fan:

φ = γN/F (Tsurf − Tenv) (3)

γN = 1.31 (Tsurf − Tenv)1/3 (4)
γF = 11.4 + 5.7v (5)

Where Tenv and Tsurf are respectively environment and object
surface’s temperatures and v is the speed of the wind in (m/s).

B. Setting up the numerical problem

Given the above equations, we want to solve the heat
equation in the microprocessor-heatsink system with Neumann
Boundary conditions [4, p. 752]. The system contains heat
sources (i.e. the microprocessor) described by the power
density q(x,y,z) and a conductivity κ that may vary in space.



L. VERSINI 2

The heat equation in the steady state can be written as
follows [3]:

κ∇2T = k

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
= −q(x,y,z) (6)

This has to be true at any point in space. In the above, we
further simplify the math by looking at the cross section of a
very long microprocessor for which we can take ∂2T

∂z2 ≈ 0 (cfr.
[3]). Moreover, we note that since the boundary conditions
depend on (Tsurf − Tenv), we can perform a change of
variable T ′ = Tsurf − Tenv , solve eq. (6) for the difference
in temperature and add an offset of Tenv at the end. For the
remaining, we will assume this change of variable and drop
the superscript in T ′.

1) Numerical representation: To solve PDE (6) numeri-
cally, we divide the system into a 2-dimensional grid of pixels,
each one with its own temperature Ti,j , heat capacity κi,j
and source term qi,j . Moreover, we need to approximate the
Laplacian operator ∇2 with a discrete stencil. We use the
finite difference scheme described in [5, p. 407] and eq. (6)
becomes:

κi,j
−4Ti,j + Ti+1,j + Ti−1,j + Ti,j+1 + Ti,j−1

h2
= −qi,j

(7)
Where h is the pixel size. This equation is rearranged into:

κi,j(−4Ti,j + Ti+1,j + Ti−1,j + Ti,j+1 + Ti,j−1) = −qi,j h2
(8)

We physically interpret this equation as the sum of the
heat fluxes from the four sides of the pixel Ti,j using Fourier
conduction law introduced in Sec. II-A1.

2) Handling the boundary: In this subsection we describe
the form of eq. (7) at boundaries between two different solids
and between solid-air. We consider the example illustrated in
Fig. 2 which is a (3 × 3) grid of solid, composed by two
different materials (blue filling and white filling) with thermal
conductivities κ1 and κ2. The system is surrounded by air,
and the heat generated by the sources (S) is dissipated via
convection (Sec. II-A2).

We consider the left hand side of eq. (7) evaluated at
the point (0, 1). The contributions from (0, 0) and (0, 2) are
straightforward to evaluate since all three points have the
same κ1. The contribution to the total heat flux from the
point (1, 1) which has thermal conductivity κ2 needs to take
energy conservation into account. Indeed, we must have that
φ(1,1)→(0,1) = −φ(0,1)→(1,1), but since Fourier Law depends
on the thermal conductivity of the particular material, we need
to find a single value that can be used for both φ(1,1)→(0,1) and
φ(0,1)→(1,1). In our simulation we choose to use the average
κ̄ = (κ1 + κ2)/2.

Finally, we need to consider the last contribution from
(−1, 1). That pixel is labelled with “Air” and it is where Neu-
mann boundary conditions are applied. We consider (−1, 1)
to be a virtual extension of the material with conductivity κ1

Fig. 2: Thick black line defines a sample (3 × 3) pixel grid
representing two materials with different thermal conductivi-
ties (κ1 and κ2). Pixels outside of the black perimeter show
the interface matter-air. Pixels labelled with “S” are source of
heat. Origin placed in the top left corner, following Python’s
matrix indexing convention.

and we set its temperature T ∗−1,1 such that the condition on
the gradient of T0,1 is satisfied. Hence, using (1) and (3)

κ1
T0,1 − T ∗−1,1

h
= γ T0,1 (9)

and rearranging the above we obtain an expression for
κ1T

∗
−1,1:

κ1T
∗
−1,1 = κ1T0,1 − γhT0,1 (10)

Hence, summing up the discussion above, we can write eq.
(7) at (0, 1) as:

− 3κ1T0,1 − κ̄T0,1 + κ̄T1,1 + κ1T0,2 + κ1T0,0

+ κ1T
∗
−1,1 = −qi,jh2 (11)

Analogous equations for the remaining 8 pixels can written
following this procedure. By solving the system of coupled
equations that comes out if it, the values of temperatures Ti,j
can be found. It is important to note that even though eq. (11)
looks linear with temperature, in the case of natural convection
the factor γN contained in T ∗−1,1 (eq. (10)) has a (T0,1)1/3

dependency, hence breaking linearity.
Eq. (11) can be written in natural units by dividing both

sides of the equation by q0h
2 where q0 is some reference

power density (which in the system we simulated would be
0.5 W/mm3). We could then solve for T ′ = [k0/(q0h

2)]T
which is dimensionless and where k0 is a reference conduc-
tivity. However, since at our scale the values appearing in eq.
(11) turn out to be in a similar order of magnitude - from
O(1) to O(104) - we decided to use SI units instead.
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III. ALGORITHM CHOICE AND VALIDATION

In this section we motivate the choice of algorithms to
solve the system of coupled equations introduced in Sec.
II-B2. These differ according to the natural convection and
the forced convection cases (Sec. II-A2). The algorithms were
implemented in Python 3 and ran on a MacOs machine. A
linear algebra routine was implemented to perform matrix
inversion and to solve linear systems, using either LU decom-
position or the iterative Jacobi method according to which
one was faster in a particular problem. However, where speed
was crucial (e.g. matrices of order O(1000)) NumPy functions
numpy.linalg.solve and numpy.linalg.inv were used instead [6].

1) Forced Convection: As mentioned in Sec. II-B2, in the
case of forced convection the system of coupled equations
turns out to be linear. Hence the problem is in the form:

M
#»

T =
#»

b (12)

Where
#»

T is the unrolled 1D vector of temperatures containing
every pixel in the 2D microprocessor-heatsink system and the
matrix M encapsulates the left hand side of eq. (8). Vector

#»

b
contains the source terms in the right hand side of eq. (8).

2) Natural Convection: In the case of natural convection,
γN is not linear with temperature, hence leading to a set of
coupled non-linear equations. In order to solve them, we tried
two different approaches, a relaxation method and Newtons’s
method. The first one was obtained by moving the T ∗ terms
in eq. (11) to the right hand side, hence obtaining a linearly
dependent left hand side which can be expressed by a matrix-
vector multiplication M · #»

T and a
#»

b (
#»
T) vector on the right

which is a function of temperature since it contains the −κT ∗i,j
terms. This suggested the following iterative algorithm,

#»

T(n+1) = M−1
#»

b (
#»
T(n)) (13)

where M−1 has to be computed only once during the itera-
tions. This approach turned out to be quite slow in convergence
(see Sec. III-A). The multidimensional Newton’s method was
far more efficient: by writing all the terms in eq. (11) on
the left hand side, we converted the simultaneous solution
of a system of equations to a multi-dimensional root finding
problem. This was solved using Newton’s algorithm as showed
in [5, p. 275]. We note that in this problem the Hessian matrix
is computed analytically. The detailed implementation can be
found in the code [7].

A. Performance

We now compare the performance of the three algorithms
introduced in the previous section. The time required to
solve the PDE can be split into two tasks, the first one is
initialising the system, which requires an iteration through
all points of the 2D system in order to fill in the relevant
matrices. By memorising relevant information in arrays, this
time consuming step is performed only once (see code [7]).
Then, there is the actual solution that is performed via a direct
or an iterative method. For the latter, we stopped the iteration
when the fractional change of the maximum temperature was
less than 2 · 10−11. Since the first task is common to all three

Fig. 3: Shows the time needed for the algorithms to solve
the coupled system of equations in the case of Direct method
(forced convection), Newton’s method (natural convection)
and relaxation (natural convection). The algorithms were run
using the linear algebra package numpy.linalg to achieve better
performance.

algorithms, in Fig. 3 we show the time taken to perform the
solution part as a function of

#»

T vector size.
We can see that the ending part of all plots is approxi-

mately linear in log scale, hence suggesting an exponential-like
growth. Within the range of pixels we worked on, Newton’s
method is faster than relaxation, leading an improvement of
about three orders of magnitude. However, we also see that
the Black line is slightly steeper, hence suggesting that the
advantage of Newton’s method over the relaxation might not
be retained in the long run. Indeed, even though in this
context Newton’s method converges in a much shorter number
of iterations (O(10) against O(100, 000) for relaxation), it
requires to solve a linear system of equations at every step,
which can be computationally demanding in the long run,
whereas the relaxation method only requires inverting a matrix
once at the beginning of the computation.

In order to validate the results, the algorithms were cross-
checked (a relaxation method was coded for the forced con-
vection case too) and the order of magnitude of some of the
calculations was compared with an available online simulator
[8]. Moreover, we ensured that our results were not resolution
dependent by comparing the answers at 4 pixels per mm2

(used throughout the investigation) and at 16 pixels per mm2.

IV. INVESTIGATION

The aim of the investigation was assessing under what
physical settings can a full-power operating microprocessor
work below 80 oC [3], given an outside temperature of
Tenv = 20 oC.

We analysed the system microprocessor-ceramic plate first
on its own and then coupled with a heat sink, under both nat-
ural and forced convection conditions. Finally, we simulated
a triangular-shaped fin heat sink.

The microprocessor is modelled as a 1×14 mm2 rectangle
and “infinitely” long in the depth dimension (cfr. approx-
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imations made in Sec. II-B) and at top speed it produces
0.5 W/mm3. The microprocessor is centered on a 2×20 mm2

ceramic case which has a supporting function. A heat sink
of variable fin number is showed in Fig. 7a. More details
about the sizes of the elements can be found in [3]. The
conductivities κ of the various components are summarised
in the following table.

Component Thermal Conductivity [W/m K]

Microchip 150
Ceramic case 230

Heat sink 250

A. Without Heat Sink

We simulated the system without heat sink under natural
convection conditions. The average temperature across the
microprocessor in the steady state case was measured to be
< T >= (7301 ± 2) oC , where the error on the mean
value is the standard deviation of the temperatures measured
at all pixels in the microchip. This is more than five times
higher than the melting point of Silicon (Tmelt = 1414 oC)
[9]. Realistically, we could expect the microprocessor to break
before reaching this temperature. Moreover, if for any reason
natural convection had to be obstructed (e.g. due to obstacles),
this value would be much higher since “dead air” is not a good
conductor [2, p. 571]. Hence, it is necessary to use some kind
of device with high thermal conductivity to draw heat out of
the microprocessor and distribute it on a wider area.

B. Heat Sink and Natural Convection

We simulated the system under the same conditions, this
time adding an Aluminium heat sink as showed in Fig. 7a,
with a total of 28 fins 30 mm high. By simulating the system
under natural convection, we measured an average temperature
of < T >= (453± 2) oC across the microchip.

Fig. 4: Shows the average microprocessor temperature as a
function of the number of fins N . We note that gradient
of the line decreases as N increases suggesting that adding
fins gets less and less effective as the number grows up. An
exponential fit was performed using scipy.optimize.curve fit
and the resulting fit is showed in the yellow rectangle.

Even though we see that the addition of a heat sink leads
to a sensible improvement in the average temperature, this
is still too high. We note that the distribution of temperatures
along the fins is not homogeneous, with the central and warmer
fins contributing more to the cooling than the ones at the
sides according to eq. (3). Hence, we expect that increasing
the number of fins will get decreasingly helpful and this can
be seen in Fig. 4 which shows the average temperature as a
function of fin number (fin height 30 mm). By performing
an exponential fit (using scipy.optimize.curve fit), we can see
that the fitted function has an asymptote at 348 oC. Even
if this does not precisely reflect the behaviour of the data
points, it still suggests that a large number of fins would be
required to reach a safe operating temperature (80 oC). Similar
considerations can be done for the fin height.

Since the central part of the heat sink is warmer, we might
think that keeping the number of fins N fixed but reducing the
fin spacing would lead to lower temperatures, as there would
be a higher density of fins at the center. However, it is also
true that reducing the fin distance translates into reducing the
total surface exposed to air since the base which contributes to
cooling shrinks too. Hence, this may or may not lead to lower
temperatures across the microchip according to the trade off
between these two effects. In the particular case of Fig. 7b (fin
height: 30 mm), increasing the fin distance to b = 2 mm leads
to a higher average temperature. However if we consider the
same system with a fin height of 20 mm, then more importance
is given to the base of the heat sink and having a fin distance
of b = 2 mm turns out to be more convenient.

C. Heat sink and Forced Convection

In the previous section we came to the conclusion that
natural convection alone does not allow to achieve good
operating temperatures if we want to keep the heat sink within
practically useful sizes. We now analyse what happens when a
fan is employed to force air through the structure. In this case
the boundary condition is given by the formula for forced
convection in Sec. II-A2, in which we took wind velocity
v = 20 m/s. By considering the same system showed in Fig.
7a, we obtained an average temperature across the microchip
of < T >= (79.9 ± 2)oC, which we accept although the
standard deviation implies that there are points inside the
microchip where the temperature is higher than 80oC.

The choice of the number of fins and heights is degenerate:
there are multiple combinations that allow good working
temperatures. One selection criterion might be the one of
choosing the shape that optimizes the volume occupied by
the microchip. In Fig. 6 we show the average temperature
across the microprocessor for a combination of fin heights
and fin numbers. We can indeed notice that the optimal area
within the safe-temperature zone (not white-bordered cells) is
achieved for a fin height of 30 mm and fin number of 28 (as
the one showed in Fig. 7a).

D. Shape of fins

Another improvement to the heat sink might be achieved
by changing the shape of the fins. Taking inspiration from
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(a)

(b)

Fig. 5: Top: diagram showing the dimensions of the system
composed by microprocessor (violet on the bottom), ceramic
case (Orange), heat sink (Yellow) and surrounded by air
(Blue). The heat sink is composed by 28 fins 30 mm high.
Bottom: shows the heat map obtained by solving the sourced
steady state diffusion equation for the system in the above
frame with natural convection boundary conditions. The av-
erage and standard deviation of the temperatures measured
across the microprocessor is reported in the white box and it
is above the operating temperature of 80oC.

the work of Chen [10], we compared the simulations run
on rectangular and triangular shaped fins. Fig. 7 shows that
for the dimensions we chose, rectangular fins achieve better
results than triangular ones. Indeed whereas a triangular shape
leads to a higher area exposed for fin, it also has a larger
thermal resistance since the width of the fin decreases hence
obstructing the heat flow. However, this answer might be
case dependent and more investigation at different relative
dimensions is needed before drawing a conclusion.

V. CONCLUSION

We showed an approach to set the steady state heat equation
numerically (Sec. II-B2) and we showed how a direct and

Fig. 6: The plot shows the average temperature across the
microprocessor for variable number of fins and fin height in
the heat sink. White bordered cells are above the maximum
operating temperature of 80oC. Numbers in the top right are
proportional to the sectional surface area of the system. The
red bordered cell shows the combination of fin height and
fin number that minimises the area while keeping the average
temperature below 80oC.

iterative methods can be used to solve for the heat map (Sec.
III). We then applied this technique to analyse the temperature
profile within a full-speed operating microprocessor and we
came to the conclusion that both a heat sink and a fan are
required to achieve operating temperatures below 80oC whilst
limiting the size of the sink. We finally showed how these
algorithms can be applied to different shaped fins and that
within our model rectangular fins appear to be more effective
than triangular ones. All of the above results should be
validated experimentally and we further note that our approach
does not directly describe fluid dynamic effects nor tries to
model whether a certain fin pattern is suitable for the air pump
to work properly. The effect of these considerations might be
object of future investigations.
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